سبد خرید  cart.gif |  حساب من |  تماس با ما |  راهنما     Search
موضوعات مرتبط
Cover image for product 0470343966
He
ISBN: 978-0-470-34396-8
Hardcover
248 pages
July 2011
This is an out of stock title.
  • Description
  • Table of Contents
  • Author Information
  • Reviews

Important insights into the challenges of machine intelligence research

Machine intelligence is?the study of the principles, foundations, and designs of adaptive systems that have the ability to learn, predict, optimize, and make decisions to accomplish goals through interaction with uncertain environments. This book advances a fundamental understanding of self-adaptive intelligent systems, helping readers move toward the?long-term goal of replicating certain levels of brain-like intelligence, while also bringing such a level of intelligence closer to reality across many of today's complex systems.

Self-Adaptive Systems for Machine Intelligence consists of four major sections:

Section 1 introduces self-adaptive systems for machine intelligence research, identifying the research significance and major differences between traditional computation and brain-like intelligence;

Section 2 presents data-driven approaches for machine intelligence research, emphasizing incremental learning, imbalanced learning, and ensemble learning;

Section 3 focuses on biologically inspired machine intelligence research, with adaptive dynamic programming, associative learning, and sequence learning discussed in detail;

Section 4 offers suggestions about critical hardware design considerations—such as power consumption, design density, memory, and speed—for potentially building complex and integrated self-adaptive systems into real hardware.

Different application problems such as pattern recognition, data classification, adaptive control, and image recovery are presented to show the capability of the proposed systems in learning, prediction, and optimization. The presented principles, architectures, algorithms, and featured case studies not only offer fresh insights into machine intelligence research, but also provide new techniques and solutions across a wide range of real-world applications. All the issues discussed herein are active research topics in the field, making this a valuable resource for graduate students to motivate their research toward master's and PhD levels. The book is also intended for academic researchers and professionals in the field of computational intelligence/machine learning, industrial researchers and R&D engineers who are interested in adaptive systems, and undergraduates majoring in science or engineering.

Wiley Global Education
Educational materials in all media for colleges and universities.