This book has been written to meet the growing interest of researchers in charge-transport properties of disordered solids, that is, materials without a long-range order in the spatial distribution of atoms. Disordered systems are very useful for various applications, particularly in low-cost large-area devices. Disordered solids have also been intensively studied due to the interest of researchers in the fundamental mechanisms determining various fascinating properties of such materials. This book presents modern theoretical concepts and experimental techniques for studying charge transport in disordered systems and describes various device applications of disordered materials and potential future applications.
Chemically very different systems are considered in the book: inorganic solids (such as amorphous semiconductors and glasses), organic materials (for example conjugated and doped polymers) and biological systems (DNA molecules). Solids with electron conduction and those with ion conduction are described. Remarkably, the charge-transport mechanisms in most of these systems can be understood in the context of rather universal concepts.
This book is addressed to postgraduate students and research professionals in physics, chemistry, and electrical engineering, who would like to learn about charge-transport properties of disordered systems and about applications of such systems in modern electronics.